

Commercial Linux Clusters

A guide for everyday e-business clusters

Internal use, but not confidential. Last update 2006-03-07.

Avi Alkalay <<u>avix@br.ibm.com</u>>

Linux, Open Standards Consultant IBM Corporation

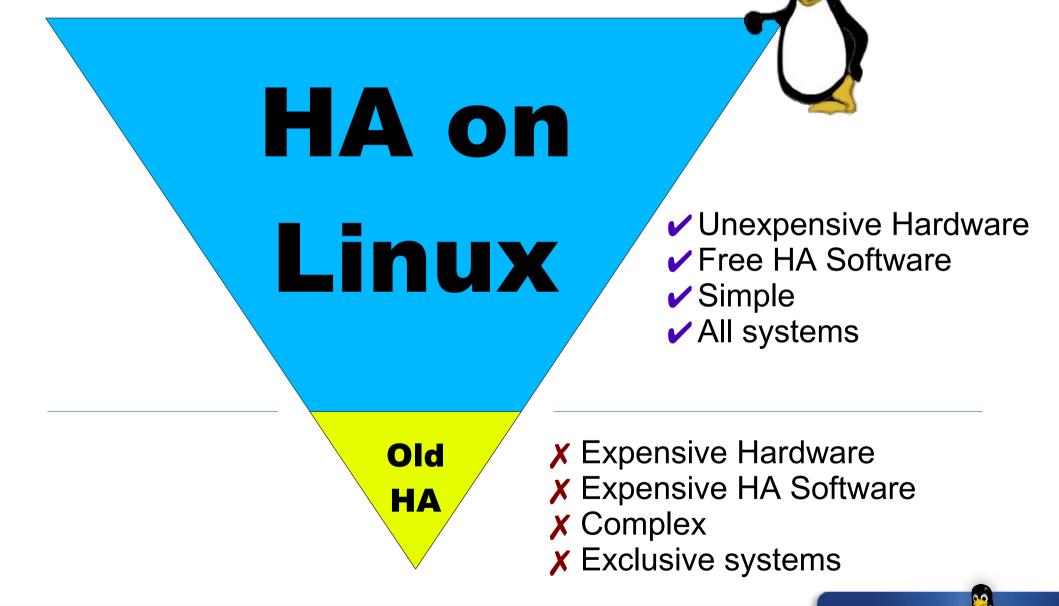
About this Document

- This document highlights High Availability Linux Clusters on IBM hardware and software, covering different cluster solutions
- It is intended to be used by architects, sales people and customers
- Last version available at: <u>http://avi.alkalay.net/linux/docs/ha/</u>
- The e-server logo uses a special true-type font that can be installed from <u>http://watgsa.ibm.com/~avibrz/public/c4eb/ibmfonts</u>

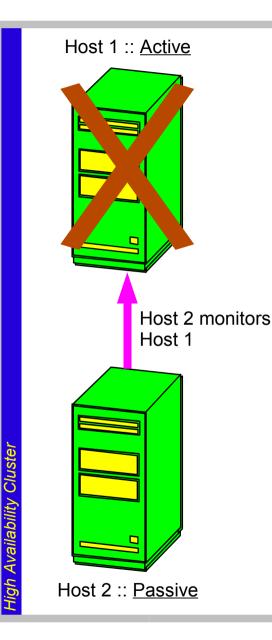
ibm.com/linux

 For Linux viewers, you should install Microsoft fonts for better results from <u>http://avi.alkalay.net/software/webcore-fonts</u>

High Availability Status


Who wants Low-Availability systems?

Why are there so few High-Availability systems?


Linux High Availability Potential

ibm.com/linux

TEM

How High Availability Works ?

- <u>Host 1</u> is the main application server. HA Software on <u>Host 2</u> monitors <u>Host 1</u> availability
- 2. When <u>Host 1</u> fails, the HA software automatically takes the following actions
- **3.** HA Software makes the *Application* Data Files available on <u>Host 2</u>
- 4. HA Software sets *Application* service IP addresses on <u>Host 2</u>
- 5. HA Software starts *Application* on <u>Host 2</u>

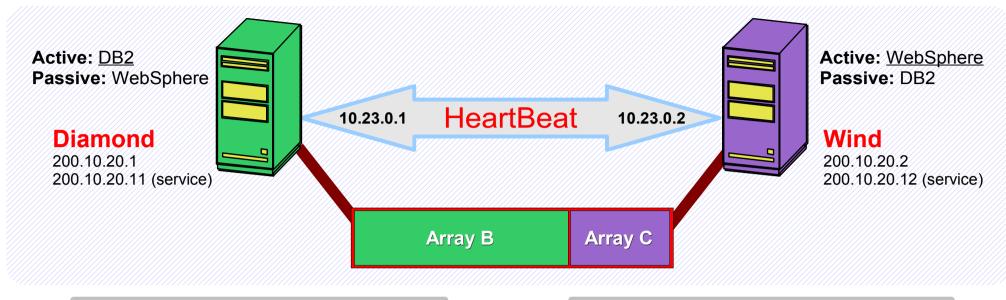
Run in Screen Show Mode

Which Applications I Can Cluster ?

- Any Server Software can be <u>**HA**</u> clustered
 - Any DB, Web-Server, WebSphere, Domino, Samba or other File Server, Mail Server, ERP, etc. Application doesn't have to be aware of its HA cluster context
- If some server software can't be included in an HA context, the client protocol with the server must be reviewed. This is very rare.
- An application (and filesystem) must be able to recover from crashes – preferably quickly. Any regular DB executes this action when started.
- All nodes may run different active applications simultaneously. The peer node will be passive for this particular app. These are <u>Active-Active</u> clusters

A Note About Parallel Applications

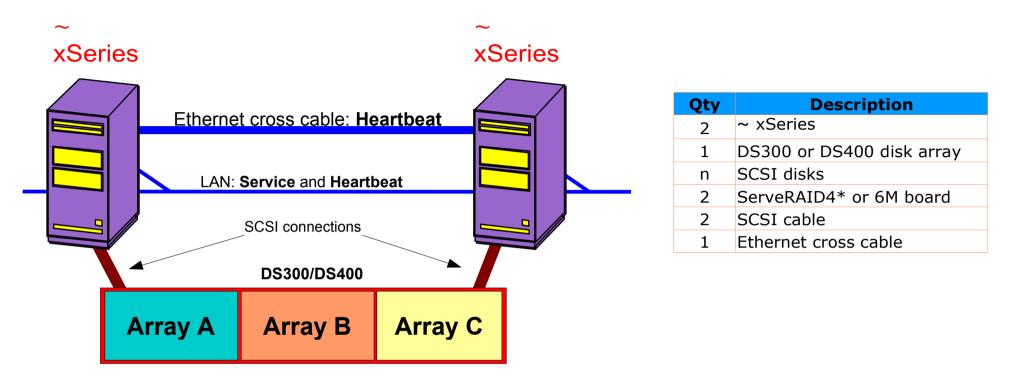
- There is some special apps that were built to use other nodes' computing capacity in a parallel way
 - Example: DB2 Parallel Server, Oracle RAC, Domino replicas, etc
- These apps use to have a <u>Controlling Process</u> that runs on a <u>unique node</u> and dispatches activity to slave nodes
- High-Availability must be provided for the Controlling Process in the same way as for regular apps
- Parallel Applications use to require (but not always) special storage configurations, for simultaneous multinode shared data access



HA Common Architectures

Cluster Architecture Perspectives

Service



DB2 Service	diamond.domain.com		
Initially active on Host Diamond	IPs: 200.10.20.11 (service), 200.10.20.1		
Service hostname: <u>db2.domain.com</u>	👳 🖌 HB: 10.23.0.1		
Service IP: 200.10.20.11	Initial service: DB2		
WebSphere Service	😤 wind.domain.com		
Initially active on Host Wind	P IPs: 200.10.20.12 (service), 200.10.20.2		
Service hostname: was.domain.com	8 🖌 HB: 10.23.0.2		
Service IP: 200.10.20.12	Initial service: WebSphere		

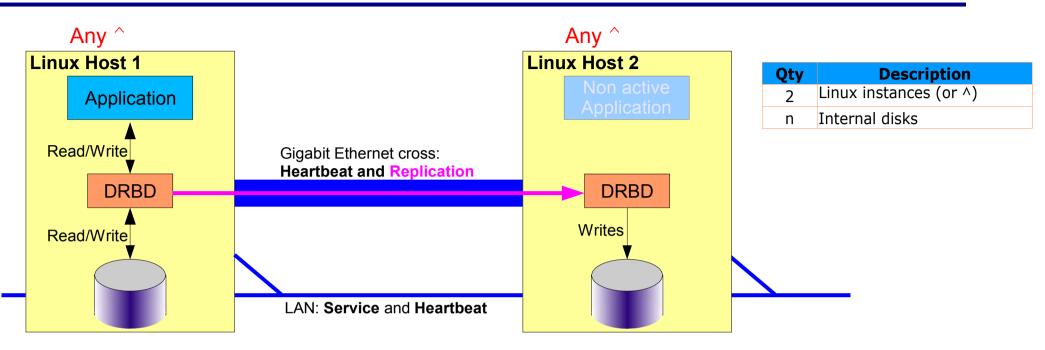
Array A :: Linux OS, Application Software
 Internal storage. Each machine has its own.
 Array B :: Database
 Online for Diamond. Offline for Wind (on if Diamond fails)
 Array C :: Application business logic files
 Online for Wind. Offline for Diamond (on if Wind fails)

ServeRAID and SCSI Clusters Overview

- Host 1 runs AppA. Optionally, Host 2 may run AppB
- Host 2 monitors availability of Host 1 through some Heartbeat software
- In case of <u>Active-Active</u> cluster, **Host 1** may monitor **Host 2** simultaneously
- If Host 1 fails, a set of automatic actions on Host 2 will:
 - Take control of Host-1-owned disk arrays;
 - Configure Host 2's network interfaces to respond as Host 1 and Host 2 simultaneously

ibm.com/linux

Activate AppA on Host 2


ServeRAID and SCSI Clusters Details

- Support for <u>Active-Passive</u> and <u>Active-Active</u> clusters
- Red Hat Advanced Server's Cluster Manager is not supported with *clustered* ServeRAID
- Hardware feature: each logical array can be owned by one node at a time (this is why Red Hat's solution will not work)
- RAID 5 not supported for clustered environment, in any platform. See ServeRAID manual page 74

- Supported high availability software:
 - System Automation for Multi Platforms (aka TSA)
 - Linux-HA
 - SteelEye's LifeKeeper

Data Replication Clusters Overview

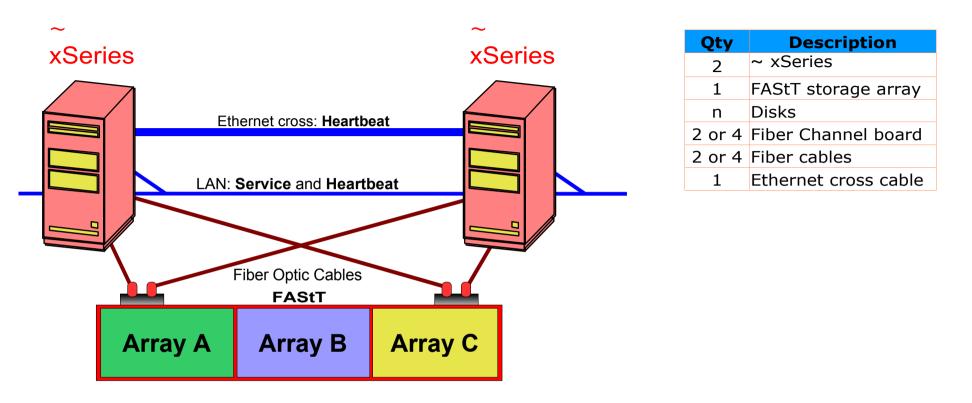
- Host 1 runs AppA. Optionally, Host 2 may run AppB
- AppA reads and writes to local storage via DRBD. Each byte written in Host 1's local storage is replicated online to DRBD on Host 2.
- Host 2 monitors availability of Host 1 through some Heartbeat software
- In case of <u>Active-Active</u> cluster, **Host 1** can monitor **Host 2** simultaneously
- If Host 1 fails, a set of automatic actions on Host 2 will:
 - ✓ Activate Host 2's replica of the storage (mount the volume);
 - Configure Host 2's network interfaces to respond as Host 1 and Host 2 simultaneously

ibm.com/linux

Activate AppA on Host 2

Data Replication Clusters Details

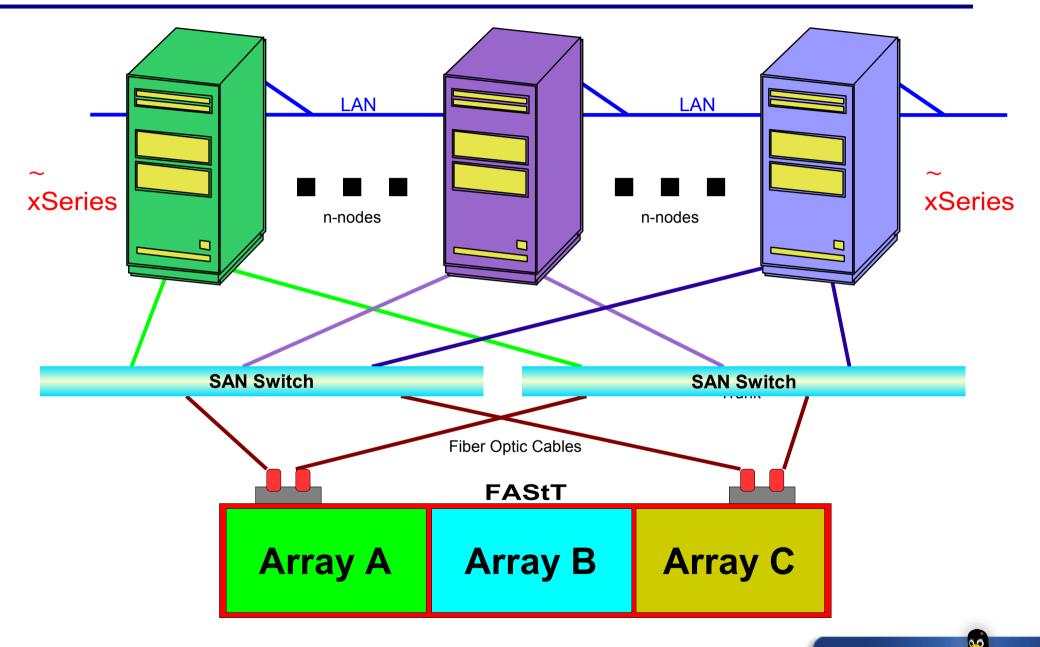
- DRBD stands for Data Replication Block Device. It is a low level replication software that operates on the OS level. <u>http://www.drbd.org/</u>
- DRBD is completely transparent to the application and users. No special support for replication is required in application
- Support for <u>Active-Passive</u> and <u>Active-Active</u> clusters
- Supports LVM and HW RAID. Linux on any ^ family, virtual Linux instances or mixed
- DRBD can be used for *cross-site replication*. SW RAID is a waste of time and CPU when DRBD is used
- Customer reference regarding replication bandwith: Hospital running Informix on a DRBD cluster with observed peak load of 6MBits/s over the 100MBits/s fast ethernet interface used for replication
- zSeries High Availability Red Paper: <u>http://www.redbooks.ibm.com/abstracts/redp0220.html</u>
- Supported high availability software:
 - Linux-HA for all platforms
 - SteelEye's LifeKeeper for ^ xSeries
 - DRBD is not compiled by default on Red Hat AS. But IGS can easily provide this functionality on RHEL


SAN Based Linux Clusters

- Fully shared storage clusters brings a new level of clustering to Linux
- Leverages high performance parallel applications
- While ServeRAID requires that each node keeps its own private logical array (transferable in a fail-over situation), SAN don't. Each storage byte is truly shared across nodes.
- When shared storage is needed, a software layer is required to manage simultaneous multiple nodes access. This is provided by things like GPFS, OpenGFS, GFS, Oracle File System (included in RHAS), etc.
- Due to higher price, SAN storage should be chosen when simultaneous data access is a must. Other way, SCSI may provide a better price/benefit relation.

Simplest SAN Cluster

- One FC cable per node is also supported
- Both nodes may be active, running the same parallel application. But generally one node runs a special application process to balance requests: This is the Controller Process
- Some High Availability software is needed to move the Controlling Process from one node to another, when in a failure situation


SAN Clusters Details

- Support for <u>Active-Passive</u> and <u>Active-Active</u> clusters, but Parallel Active-Active applications takes more benefit from the HW.
- When each node has 2 FC boards, special software, provided with the product, is needed to run in each node
- FAStT support: <u>http://www.storage.ibm.com/disk/fastt/supserver.htm</u>
- Supported high availability software:
 - System Automation for Multi Platforms (aka TSA)

- Linux-HA
- Red Hat Advanced Server
- SteelEye's LifeKeeper
- Polyserve

Advanced SAN Cluster

ibm.com/linux

IBM

Which Storage to Use

The best (price/perf) storage solution is 100% dependent on the application that will be hosted

Context / Storage Type	DRBD	ServeRAID/SCSI	FAStT/FC
Majority of HA clustered server applications	/	 ✓ 	 ✓
Parallel application that requires multinode simultaneous shared storage	×	×	~
Parallel application that <u>does not</u> require multinode simultaneous shared storage (like DB2)	~	~	~
Storage consolidation with 3 or more nodes using same storage device	×	×	~
HA Solution that needs simultaneous shared storage access (Like RH Cluster System)	×	×	~
Customers that don't like Data Replication, can't deal with resync or have extremely (seriously extreme) write-intensive application		~	~

A Note About Storage Sizing

Oversized architectures are very common. Customers of new applications don't have a clue of their storage needs. Here are some real world examples.

- 1. Minimum Red Hat Linux installation (best for a server): **800MB**
- Storage needed to install OS + DB2 + WebSphere or Oracle software files: 1GB
- Database size of one of brazilian biggest
 B2B portal running Ariba: 20GB
- General Motors in Brazil all portals (B2B, B2C) web content size: 2.8GB
- Same portals total database size on disk:
 670MB
- 6. Same portals compressed web server logs for 1 year: **40GB**
- 7. Bookseller B2B web content: 3GB

- 8. DB size on disk of a brazilian online yellow pages service: **18GB**
- 9. Web content of same: **300MB**
- 10. Portal web content (EARs, JARs) of a small bank: **10MB**
- 11. Brazil's large SAP customer's HR database size: **60GB**
- 12. A big call center CRM database size: **5GB**
- 13. Oracle ERP DB size for a company in the automotive sector: **111GB**
- *14. Single* SCSI HD as of 02H03: **140GB**

Source: IBM Strategic Outsourcing / Web Hosting delivery team and Customers. 02H03

Popular Software Details

DB2 on Linux Clusters

- DB2 UDB parallel server on n-node Intel Linux Cluster is the more cost effective, high performance database. Intel hardware is a commodity, and horizontal scalability is virtually infinite
- Even when used as a parallel application, DB2 is a Share-Nothing database. No simultaneous shared storage like SAN is required. DS300/400 (SCSI) or even internal storage with replication may be used for inexpensive configurations
- Storage sizing for DB2 (or any database) must contemplate <u>backup</u> and <u>transaction log</u> sizes, not only the pure data size. Sizing must be done by the customer DBA that knows the application
- DB2 Parallel needs HA software to take-over the Controlling Process. SA/MP (aka TSA) is included for free on DB2 Parallel on Linux and AIX, for any number of nodes
- Detailed DB2 on DRBD Linux cluster configuration manual: http://www-3.ibm.com/software/data/pubs/papers/#db2halinux

Oracle RAC on Linux Clusters ORACLE[®]

- Oracle 9i Real Application Cluster is a complete solution for n-node Linux Clusters. It is quite popular today
- Oracle is a share-all database, so only FC configurations are supported
- Oracle filesystem (included in Red Hat Enterprise Advanced Server 3.0) is the software layer that will guarantee shared data integrity
- No HA software is needed. Oracle provides HA for the controlling process. Oracle on Red Hat AS + xSeries servers + SAN storage is a complete solution
- Storage sizing for DB2 (or any database) must contemplate <u>backup</u> and <u>transaction log</u> sizes, not only the pure data size. Sizing must be done by the customer DBA that knows the application
- Special cluster software may be used, but not necessary:
 - Polyserve

IBM.

Lotus on Linux Clusters

Lotus. software

- From an HA Linux clustering perspective, Lotus Domino is a regular application with no parallel characteristics
- Domino provides database replication capabilities though, that can be used to eliminate shared storage and reduce solution price
- If external storage still needed, DS300/DS400 (SCSI) will do the job. No SAN is required

System Automation for Multiplatforms

- Also known as Tivoli System Automation, is the IBM strategic solution for High Availability
- Since version 2.1, supports Linux DRBD (replication), ServeRAID and Fiber Channel storages, due to its storage-agnostic features
- Powerful high level policy and rules creation with grouping and relationships
- Reduce implementation time, coding and support effort with **Automation Policy** Tivoli, software
- Can be integrated in a Tivoli-managed data center
- HA infrastructure derived from RSCT, from IBM AIX's HACMP
- Mainframe-like High Availability for Linux, toward autonomic end-to-end automation

ibm.com/linux

Currently supported on ^ zSeries

xSeries, pSeries, AIX and

HA Linux Clusters Contacts

- <u>Mark Price/Beaverton/IBM@IBMUS</u> IGS L3 contact (only if local IGS contracted)
- <u>Alan Robertson/Denver/IBM@IBMUS</u> LTC HA Linux Clusters specialist
- <u>Carol Carson/Poughkeepsie/IBM@IBMUS</u> xSeries Linux Sales Enablement
- <u>Douglas McGuire/Lexington/IBM@IBMUS</u> Americas Linux Clusters
- Joachim Schmalzried/Germany/IBM@IBMDE
 IBM System Automation for Multiplatforms
- High Availability Software:
 - Tivoli System Automation: http://ibm.com/software/tivoli/products/sys-auto-linux

- Linux-HA: http://www.linux-ha.org
- Red Hat Advanced Server: http://www.redhat.com
- SteelEye's LifeKeeper: http://www.steeleye.com
- Polyserve: http://www.polyserve.com

Avi Alkalay <a>avix@br.ibm.com +55-11-2132-2327

Linux, Open Standards Consultant IBM Corporation

Thank You !

People on This Document

- Alan Robertson: HA Linux Clusters LTC specialist
- Alcino Bras: FAStT and SAN info
- João Marcos: DB2 review
- Moacir Malemont: Lotus review
- Joachim Schmalzried: Tivoli System Automation awareness
- Jeferson Moia: xSeries part numbers
- Ana Maria Bezerra: Strategic Outsourcing real-world sizing numbers

